Design and Development of Accelerometers and Gyros

Tutorial 2B
Bob Sulouff
Analog Devices Inc.
Cambridge, MA. 02139

Bob.Sulouff@Analog.com 617-761-7656
Presentation Outline

- Inertial Sensor Design Approach
- Product Improvements
- Applications
- Gyroscope Design & Applications
- Conclusions
Acceleration can be measured using a simple mass/spring system.

- Force = Mass * Acceleration
- Force = Displacement * Spring Constant
- So, Displacement = Mass * Acceleration / Spring Constant
Sensor Principle: Differential Capacitive Sensing

- Use Silicon to make the spring and mass, and add fingers to make a variable differential capacitor.
- Measure change in displacement by measuring change in differential capacitance.

Sensor at rest:
- Mass
- Spring
- Fixed outer plates
- Anchor to substrate

Responding to an applied acceleration (movement shown is greatly exaggerated):
- Applied acceleration
- CS1 < CS2
ADI Accelerometers: Key Dimensions
Interesting Facts

- 0.1 pF per side for the differential capacitor
- 20 zF (10^-21 F) smallest detectable capacitance change
- 2.5 pm minimum detectable beam deflection (one tenth of an atomic diameter)

Proof Mass = 0.7 µgram

125 Micron Overlap
1.3 Micron Gap
3 Microns Thick
iMEMS® Technology
Capacitance to Voltage Conversion

MOVABLE BEAM
ACCELERATION
UNIT CELL

CLOCK A
AMP
CLOCK B

RECTIFIED VOLTAGE OUTPUT
SYNCHRONOUS DEMODULATOR
Design Evolution
ADXL50 (1993)

- Circuit architecture
 - Closed loop
 - Concerns about polysilicon lead to force feedback design
 - 0.6 V p-p complimentary modulation of differential capacitors
 - Resistive biasing/FB (3 MΩ)

- MEMS design
 - Dielectric under structure
 - Anchors at periphery
 - Beam not centered or symmetric
Design Evolution
ADXL76 (1996)

- **Circuit architecture**
 - Open loop
 - Polysilicon robustness now confirmed
 - Full supply complimentary clocks
 - Reduced die size
 - Ratiometric
 - Switched cap filter
 - Switch biasing

- **MEMS Design**
 - Conductor under structure
 - Anchors on axis
 - Beam centered & symmetric
 - Better offsets & tempco’s
Design Evolution
ADXL78 (2002)

- Circuit architecture
 - Closed loop
 - Overload performance pushed design back to feedback
 - Servo complimentary clock amplitude
 - Differential architecture
 - Ratiometric & EMI resistant

- MEMS Design
 - Two structures
 - Conductor under structure
 - Two springs/structure
 - Robust to process variations
 - Beam centered & symmetric

- Layout
 - Compact!
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Area</td>
<td>10.8</td>
<td>5.4</td>
<td>2.7</td>
<td>2.5</td>
</tr>
<tr>
<td>MEMS Area</td>
<td>0.43</td>
<td>0.38</td>
<td>0.27</td>
<td>0.22</td>
</tr>
<tr>
<td>% MEMS</td>
<td>4.0%</td>
<td>7.0%</td>
<td>10%</td>
<td>8.8%</td>
</tr>
<tr>
<td>(C_s)</td>
<td>100</td>
<td>100</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>(f_o)</td>
<td>25.0</td>
<td>24.5</td>
<td>24.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Noise</td>
<td>4.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Offset</td>
<td>3.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

MEMS Area: mm², % MEMS, \(C_s\): fF, \(f_o\): kHz, Noise: mgee/rt.hz, Offset: gee
Design Example:
ADXL203 50 mg accurate, +/- 1.7 g, 2 axis XL

- **Problem:**
 - How do we get a 10x improvement in null accuracy with minimal investment?

- **Solution:**
 - Start with ADXL202 platform and make minimal changes
 - Structure
 - Electronics
Design Example: ADXL203 50 mg accurate, +/- 1.7 g, 2 axis XL

🌟 Problem:
- How do we get a 10x improvement in null accuracy with minimal investment?

🌟 Solution:
- Start with ADXL202 platform and make minimal changes
 - Structure
 - Electronics
Move anchors towards center of die

- Modeling & experiment verification

- Lower resonant frequency (10 kHz -> 5.5 kHz)

- Use 4 μm polysilicon
ADXL203 Highlights

- Culmination of 15 years of learning
 - Process, structure design, electronics, and packaging
- Typical 50 mg absolute accuracy over temperature, -40 to 125°C
 - Measure absolute tilt to 3 degrees over temp
 - Resolve tilt changes to 0.01 degrees (1 mm over 100 m)
- Minimalist circuitry
 - For small size, thus low cost
 - Low noise (110 µg/rt Hz.)
 - Low drift
- Small 5 x 5 x 2 mm LCC package enabled by integration

Details:
- Sensitivity
 - 8.2 nm/g
- Resolution
 - 1 Hz BW -> 800 fm (Gyro 16 fm)
 - 100 fF -> 50 zF (Gyro 12 zF)
- Offset
 - 0.05 g -> 4 Å (250 ppm)
ADXL203 0 g Data Over Temperature

Zero g vs. Temperature
XL203 Characterization
Lot 74990 Group B

Volts @1V/g

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

2.4 2.42 2.44 2.46 2.48 2.5 2.52 2.54 2.56 2.58 2.6

Temp C (part going hot first, then cold)
5 degrees per minute going down, 10 degrees per minute going up

+ 50 mg

- 50 mg
Interesting Applications

- Air Bags
- Gesture Recognition
- Security
- Tilt Correction
- GPS Inertial Ref
- Toys – Sports
- Vibration Sense
- Projector Keystone
“There are 1.6 MEMS devices per person in use today in the U.S. and the number is expected to grow to nearly 5 devices per person by 2004.

—MEMS Industry Group
ADI’s iMEMS® Inertial Sensors in Automotive Systems

- Air Bag Systems
- Navigation Systems
- Car Alarms
- Vehicle Dynamic Control Systems
- Rollover Safety Systems
ADI Sensors Used in Consumer and Industrial Products and Applications

- Health Products (Blood Pressure Monitors)
- Performance Meters
- Sports Aids
- Sports Products (Pedometers)
- PC Security
- LCD Projectors
Blood Pressure Monitor

- **Company:** OMRON
- **Product:** Portable Blood Pressure Monitoring Device
- **ADI Inside:** ADXL311JE
- **Function:** Tilt Sensing

- Measures forearm angle to ensure correct positioning of the wrist (at heart level)
- Results in higher blood pressure measurement accuracy
Developing Applications
Motion Sensing in Smart Handhelds

- Tilt-sensing and motion recognition for handheld devices
- Intuitive spatial browsing on small screen devices
- Orientation and location detection for mobile phones
Situational Awareness

- Enables optimization of phone features and functions based on the detection of environmental context, e.g.:
 - Turns off display when phone is held at ear level
 - Turns off vibrating mode when phone is not carried or held (not moving)
 - Automatically activates pedometer function when walking motion is recognized
 - Automatically selects portrait or landscape display orientation for picture taking or gaming
 - Manages incoming calls based on user’s activity level
iMEMS® Technology For Handhelds

- Large Document Panning and Zooming
 - Enables intuitive display control of large documents (e.g. maps) through tilt or inertial sensing

- Single-Handed Operation
 - Enables one hand operation of simple functions

- Data Entry/Selection
 - Enables menu and cursor control through tilt sensing and motion detection

- Intuitive Gaming
 - Enhances gaming experience by providing intuitive, button-less control of gaming action

- Electronic Compass Tilt-Compensation
Cellular Phone/Pedometer

- **Company:** FUJITSU
- **Product:** DoCoMo Cellular Phone for Japanese Market
- **ADI Inside:** ADXL311JE
- **Function:** Motion Sensing for Pedometer Function

- Displays number of steps walked
- Displays distance walked based on stride input
- Displays calories expanded based on user weight input
Pedometers

Pedometer model SDM [Tailwind and SDM Triax 100
Company: Nike, Inc.
ADI Inside: iMEMS® ADXL78 and ADXL278 accelerometers

Function: Shock, tilt and inertial sensing for foot motion measurements resulting in accurate speed and distance information
Laptop Security

Anti-Theft™ PCMCIA Card for Laptop Computers
Company: Caveo Technology
ADI Inside: iMEMS® ADXL202E accelerometer

Function: Inertial and tilt measurement for security perimeter and motion password setting
Gaming

Game Boy® Advance with Kirby Tilt-n-Tumble™ and Happy Panechu™
Company: Nintendo
ADI Inside: iMEMS® ADXL202 and ADXL202E accelerometers

Function: Tilt measurement resulting in intuitive game feature control
MEMS in Personal Communications

Future Potential Uses of MEMS

- Antennas
- Color bi-stable display
- Micro-switches
- Tunable capacitors and inductors
- Tunable filters
- Directional microphone
• Automotive HVAC Controls

• Humidistat and motor speed controls

• Time Controls

• Heat alarms

Source: Zigbee
Wireless Buildings

Key to success: reduced installation costs

Source: Zigbee
Integrated Micromachined Gyro

Single Chip Rate Sensor
5V Operation
Std Atmosphere
150 deg per second
Self-Test
0.03 deg/sec/sqrt hz
Compensated 5%

Lessons Learned In Accelerometer Development of Meso Structures Detecting Nano dimensions now applied to sub pico-dimensions
iMEMS Gyro Sensor

- Coriolis movement sense fingers
- Rotation sense Direction
- Drive direction
- Resonator drive fingers
- Coriolis effect movement direction
Coriolis Accel Full Scale Deflection 0.3 Nanometers
Quadrature Rejection 1 ppm

Design Issues:
Aerodynamics, Shock, Vibration, Thermal
Simplified Gyro Blockdiagram

- Synchronous Demodulation and Rectification of Y Axis Signal
- Drive and Feedback Loop
- Rateout
- Low pass filter & Amplifier
Gyro Packaging: in Vacuum or Air?

High Q

Low Q

Complicated electronics

Less complicated electronics

Phase Jitter

Very critical

Less critical
Gyro Structure

* Separated Accelerometer and Resonator
Electronic Design and Mechanical Design Interdependent

Functional Block Diagram
Gyro - Root Allan Variance

\[\sigma(t) = \frac{1}{2(m-1)} \sum_{i=1}^{m-1} (y(i+1) - y(i))^2 \] for \(i \) averaged over \(\tau \).
Automotive Gyroscope Markets

- **Vehicle Dynamic Control**
 - Interaction between anti-lock brake, electronic brakeforce distribution, traction control, and active yaw control systems to achieve dynamic stability

- **Rollover**
 - Extension of airbag safety systems for SUVs, vans, pickup trucks, and high-end vehicles

- **Navigation**
 - Provide additional real-time location input and directions when GPS satellites are not available.
Applications for Gyroscopes

- **Flight Controls/Training Systems**
 - Unmanned aircrafts
 - Supplement to flight dynamic control
 - Supplement to GPS Guidance

- **Robotics**
 - Industrial robots
 - Toy Robots

- **Weapon Systems**
 - Smart Artillery Shells
 - Missile Guidance

- **Platform stabilization**
 - Camera
 - Machinery
 - Wheelchair stabilization

- **Computer/Consumer**
 - Input devices
 - Handheld GPS
Conclusions

- Inertial Sensor Designs are Mechanical Structures of Mass Supported by Springs
- Inertial Forces on the Mass Result in Displacement that is Sensed Capacitively
- New Trends in Applications for Motion Detection are Occurring in Hand-held Devices and Portable Devices
- Gyroscopes Vibrate an Accelerometer and Measure Coriolis Acceleration that Indicates Angular Rate
Questions Please